昇思25天学习打卡营第11天|基于 MindSpore 实现 BERT 对话情绪识别
BERT是一种先进的语言模型,由Google在2018年推出。它通过双向编码器Transformer的Encoder部分,捕捉词语和句子的深层含义。BERT的创新之处在于其预训练方法,特别是Masked Language Model和Next Sentence Prediction,这使得它在问答、文本分类等任务上表现出色。在训练中,15%的单词会被随机掩码,以增强模型对上下文的理解。BERT模型经过预训练后,可以用于微调,以适应各种下游任务,如情绪识别,这在智能对话中尤为重要,有助于提升用户体验和服务质量。
BERT模型的双向编码特性和创新的预训练方法,不仅提高了语言模型的理解和生成能力,还为情绪识别等应用提供了强大的基础。通过微调,BERT可以灵活应用于多种场景。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

