PyTorch 深度学习实践-处理多维特征的输入

2024-07-19 1813阅读

视频指路

参考博客笔记

参考笔记二

PyTorch 深度学习实践-处理多维特征的输入

通过多个线性模型来模拟非线性的空间变换,矩阵计算就是不同维度之间的空间转换

说明:1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。

​ 2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。

​ 3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。

​ 4、本算法中torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用

​ 5、torch.sigmoid、torch.nn.Sigmoid和torch.nn.functional.sigmoid的区别

在这里插入图片描述

PyTorch 深度学习实践-处理多维特征的输入

可以自己随意在Model类中改torch.nn.Linear的变换,尝试后发现激活函数改成ReLU比sigmod最后得到的精确率高一些

import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])  # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]])  # [-1] 最后得到的是个矩阵
# design model using class
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)  # 输入数据x的特征是8维,x有8个特征
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        # self.linear4 = torch.nn.Linear(4, 1)
        self.activate = torch.nn.ReLU()  # 将其看作是网络的一层,而不是简单的函数使用
    def forward(self, x):
        x = self.activate(self.linear1(x))
        x = self.activate(self.linear2(x))
        x = torch.sigmoid(self.linear3(x))  # y hat
        # x = self.sigmoid(self.linear4(x))  # y hat
        return x
model = Model()
# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
# training cycle forward, backward, update
for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # print(epoch, loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if epoch % 1000 == 999:
        y_pred_label = torch.where(y_pred >= 0.5, torch.ones_like(y_pred), torch.zeros_like(y_pred))#概率大于0.5为1
        acc = torch.eq(y_pred_label, y_data).sum().item() / y_data.size(0)#计算正确率
        print("loss = ", loss.item(), "acc = ", acc)

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]