傅里叶级数的3D表示 包括源码

2024-07-11 1780阅读

傅里叶级数的3D表示 包括源码

flyfish

傅里叶级数的3D表示 包括源码傅里叶级数的基本形式 : y ( t ) = ∑ n = 1 , 3 , 5 , … N 4 A n π sin ⁡ ( n π T t ) y(t) = \sum_{n=1,3,5,\ldots}^{N} \frac{4A}{n\pi} \sin\left(\frac{n\pi}{T} t\right) y(t)=n=1,3,5,…∑N​nπ4A​sin(Tnπ​t)

其中, A A A 是振幅, T T T 是周期, n n n 是傅里叶级数的项数。

傅里叶级数中每一项的形式 :

y n ( t ) = 4 A n π sin ⁡ ( n π T t ) y_n(t) = \frac{4A}{n\pi} \sin\left(\frac{n\pi}{T} t\right) yn​(t)=nπ4A​sin(Tnπ​t)

这个公式表示傅里叶级数中每一项的贡献。

解释

t (时间) : 横坐标表示时间。

y (幅度) : 纵坐标表示傅里叶级数在该时间点的值。

f (频率) : 深度坐标表示傅里叶级数的项数对应的频率。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 定义傅里叶级数的参数
T = 2 * np.pi  # 周期
A = 1  # 振幅
N = 11  # 级数的最大项数
# 定义傅里叶级数的函数
def fourier_series(t, N, A, T):
    y = np.zeros_like(t)
    for n in range(1, N + 1, 2):  # 只考虑奇数项
        y += (4 * A / (np.pi * n)) * np.sin((n * np.pi / T) * t)
    return y
# 创建时间域和频率域的网格数据
t = np.linspace(0, 2 * T, 1000)
f = np.array([1 / T, 3 / T, 5 / T, 7 / T, 9 / T, 11 / T])
T_grid, F_grid = np.meshgrid(t, f)
# 创建3D图
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
# 绘制傅里叶级数的时域图像
for n in range(1, N + 1, 2):
    y = (4 * A / (np.pi * n)) * np.sin((n * np.pi / T) * t)
    ax.plot(t, n / T, zs=y, label=f'n={n}')
# 设置坐标轴标签和刻度
ax.set_xlabel('t (时间)')
ax.set_ylabel('f (频率)')
ax.set_zlabel('y (幅度)')
# 设置坐标轴的刻度
ax.set_xticks([0, np.pi, 2 * np.pi])
ax.set_xticklabels(['0', r'$\pi$', r'$2\pi$'])
ax.set_yticks(f)
ax.set_yticklabels([r'$\frac{1}{T}$', r'$\frac{3}{T}$', r'$\frac{5}{T}$', r'$\frac{7}{T}$', r'$\frac{9}{T}$', r'$\frac{11}{T}$'])
ax.set_zticks([-A, 0, A])
ax.set_zticklabels([f'-{A}', '0', f'{A}'])
plt.title('傅里叶级数的3D表示')
plt.legend()
plt.show()
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]