主干网络篇 | YOLOv5/v7 更换主干网络之 ShuffleNetv2 | 高效CNN架构设计的实用指南(2)

2024-07-10 1491阅读

主干网络篇 | YOLOv5/v7 更换主干网络之 ShuffleNetv2 | 高效CNN架构设计的实用指南

概述

YOLOv5和YOLOv7是目前主流的轻量级目标检测模型,在速度和精度方面取得了良好的平衡。然而,传统的YOLOv5/v7模型使用FPN和CSPNet等结构作为主干网络,在移动设备和嵌入式系统等资源受限的场景中运行时可能存在效率较低的问题。为了解决这个问题,本文提出了一种使用ShuffleNetv2作为主干网络的YOLOv5/v7模型,该模型在移动设备和嵌入式系统上具有更高的推理速度和更低的内存消耗。

主干网络篇 | YOLOv5/v7 更换主干网络之 ShuffleNetv2 | 高效CNN架构设计的实用指南(2)
(图片来源网络,侵删)

原理详解

ShuffleNetv2是一种基于ShuffleNet架构的轻量级卷积神经网络架构,它采用了以下设计原则:

  • Channel Shuffling: ShuffleNetv2的核心是Channel Shuffling操作,它可以打破特征通道之间的依赖关系,提高模型的表达能力和泛化能力。
  • Pointwise Group Convolutions: ShuffleNetv2使用Pointwise Group Convolutions来降低模型的参数数量和计算量。
  • Identity Residual Connections: ShuffleNetv2使用恒等残差连接来提高模型的梯度流动和性能。

ShuffleNetv2通过以上设计原则,在保持模型精度的同时,大幅降低了模型的参数数量和计算量,使其更加适合在移动设备和嵌入式系统等资源受限的场景中部署应用。

应用场景解释

YOLOv5/v7模型更换ShuffleNetv2主干网络后,具有以下应用场景:

  • 移动设备目标检测: 在移动设备上部署目标检测模型
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]