机器学习 - 模型性能评估

2024-07-09 1125阅读

F1度量

F1度量是用于评估分类模型性能的一个综合指标,它同时考虑了查准率(Precision, P)和查全率(Recall, R)。F1度量的公式如下:

F 1 = 2 × P × R P + R F1 = \frac{2 \times P \times R}{P + R} F1=P+R2×P×R​

其中,查准率和查全率的定义分别是:

  • 查准率(P): P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP​
  • 查全率(R): R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP​

    其中,TP(True Positive)是真正例,FP(False Positive)是假正例,FN(False Negative)是假负例。

    F1度量也可以写成:

    F 1 = 2 × T P 样例总数 + T P − T N F1 = \frac{2 \times TP}{\text{样例总数} + TP - TN} F1=样例总数+TP−TN2×TP​

    在右上角,还给出了F1的倒数形式:

    1 F 1 = 1 2 ( 1 P + 1 R ) \frac{1}{F1} = \frac{1}{2} \left( \frac{1}{P} + \frac{1}{R} \right) F11​=21​(P1​+R1​)

    加权F度量(Fβ)

    如果我们对查准率和查全率有不同的偏好,可以使用加权F度量(Fβ),其中β是一个权重参数。Fβ的公式为:

    F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta} = \frac{(1 + \beta^2) \times P \times R}{(\beta^2 \times P) + R} Fβ​=(β2×P)+R(1+β2)×P×R​

    其中,β的值决定了查准率和查全率的权重:

    • 当β > 1时,查全率的权重更大。
    • 当β 在图片中,还给出了Fβ的倒数形式:

      1 F β = 1 1 + β 2 ( 1 P + β 2 R ) \frac{1}{F_{\beta}} = \frac{1}{1 + \beta^2} \left( \frac{1}{P} + \frac{\beta^2}{R} \right) Fβ​1​=1+β21​(P1​+Rβ2​)

      这个公式可以帮助我们理解在不同的β值下,查准率和查全率对Fβ的贡献。

      总结:

      • F1度量 是查准率和查全率的调和平均。
      • 加权F度量(Fβ) 允许我们对查准率和查全率给予不同的权重。
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]