大数据分层存储架构:ODS、DWD、DWM与DWS详解
在大数据领域中,ODS、DWD、DWM和DWS代表了数据仓库的不同层次,它们共同构成了大数据的分层存储结构。这种结构的设计有助于提高数据查询效率,降低成本,并满足不同的业务需求。
(图片来源网络,侵删)
- ODS(Operational Data Store):操作数据存储层,主要存放原始的业务数据,是数据仓库的源头。它负责收集、存储和管理从各种业务系统中抽取的原始数据,为后续的数据处理和分析提供基础。
- DWD(Data Warehouse Detail):数据仓库明细层,位于数据仓库的底层。它主要对ODS层的数据进行清洗、规范化处理,去除空数据、脏数据、离群值等,以提高数据的质量和可用性。DWD层的数据保持了较高的细节粒度,支持数据的跨部门和跨系统共享和查询。
- DWM(Data Warehouse Middle):数据中间层,位于DWD层之上。它对DWD层的数据进行轻微的聚合操作,生成一系列中间结果表,提升公共指标的复用性,减少重复加工的工作。DWM层通过对通用核心维度进行聚合操作,计算出相应的统计指标,为上层的数据服务层提供支持。
- DWS(Data Warehouse Summary):数据仓库汇总层,位于数据仓库的顶层。它基于DWM层的基础数据,整合汇总成分析某一个主题域的数据服务层,用于提供业务汇总分析服务。DWS层的数据表数量相对较少,每张表涵盖较多的业务内容,字段较多,因此也称为宽表。它主要用于后续的业务查询、OLAP分析、数据分发等场景。
通过这种分层存储结构,大数据系统可以更好地满足不同层次的数据需求,提高数据处理和分析的效率。同时,各层之间的数据流动和交互也变得更加清晰和可控,有助于减少数据冗余和错误,提高数据质量。
需要注意的是,具体的分层结构和命名可能因不同的公司或项目而有所差异,但总体的设计思路和原则是一致的。在实际应用中,可以根据具体的业务需求和技术特点来选择和调整合适的分层存储方案。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
