【C/排序算法】:归并排序和计数排序
目录
- 1. 归并排序
- 2. 计数排序
1. 归并排序
归并排序是一种效率仅次于快速排序的排序算法。它有非递归和递归两种实现方式(本文只讲述递归实现,非递归实现以后有专门的文章)。
其实,归并排序也叫外排序。它不仅可以对内存中的数据进行排序,还能对文件里的数据排序。
比如:假设有10G的数据放在硬盘的文件中,要排序,如何排呢?
我们知道,内存里的空间远远没有10G,假设有1G内存可用。首先我们可以把10G的文件切分成10个1G的文件,再依次读文件,每次把1G的数据读入内存的数组中,接着利用快排对其进行排序,再把排好序的那1G的数据写到硬盘的一个文件,再继续读下一个1G的数据……当10个文件里的数据都分别有序时,再利用归并排序进行两两归并,最终使10G的数据有序。
1.算法思想:
归并排序采用分治法。首先假设一组数据的左半区间有序,右半区间有序,将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
若将两个有序表合并成一个有序表,称为二路归并。
所谓 归并,就是将两组有序的数据合成为一组有序的数据。 例如有如下两个有序数组,将两个有序数组归并为一个有序数组,这就是一次归并操作。
2.归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列。
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置。
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。
重复步骤3直到某一指针超出序列尾,将另一序列剩下的所有元素直接复制到合并序列尾。
归并排序类似于二叉树的后序遍历,即先将左右的区间都排为有序后,然后才开始进行归并操作,因为归并必须要满足两个数组是有序的。
例如有如下数组。需要先将该数组每次都分割为两个区间,直到最后每个区间都只有一个值,此时比较两个值大小,然后将该两个值归并到一个数组中,此时就得到一个有两个元素的有序数组,然后再与另一个有两个元素的有序数组进行归并,然后就得到了一个有四个元素的有序数组,然后再与另一个有四个元素的有序数组进行归并,就得到了一个有八个元素的有序数组。就这样依次递归归并,直到最后目标数组为有序数组。
3.归并排序的代码实现如下:
//把数组分成区间 void _MergrSort(int* arr,int left,int right,int* tmp) { //当区间内只有一个元素时,认为有序,递归结束,开始归并 if (left == right) return ; //右移1位右除以2的效果,用来把数组分成两个区间 int mid = (left + right) >> 1; //假设[left mid] [mid+1 right]有序,就可以归并 _MergrSort(arr, left, mid, tmp); _MergrSort(arr, mid + 1, right, tmp); //每次归并的过程 int begin1 = left; int end1 = mid; int begin2 = mid + 1; int end2 = right; //注意:这里的index不要给0,因为在递归过程中left不一定等于0 int index = left; //有一个区间结束就停止 while (begin1 if (arr[begin1] tmp[index++] = arr[begin1++]; } else { tmp[index++] = arr[begin2++]; } } //当其中有一个区间结束时,另一个有序区间的数据直接拷贝进临时数组里 while (begin1 tmp[index++] = arr[begin1++]; } while (begin2 tmp[index++] = arr[begin2++]; } //最后把临时数组里面的数据拷贝回原数组 //注意:这里拷贝时有可能是局部区间拷贝,要加 begin memcpy(arr+begin, tmp+begin, sizeof(int) * (end -begin +1)); } void MergrSort(int* arr, int sz) { //创建临时数组存放数据 int* tmp = (int*)malloc(sizeof(int) * sz); if (tmp == NULL) { perror("malloc"); return; } _MergrSort(arr, 0, sz - 1, tmp); free(tmp); tmp = NULL; } int max = arr[0]; int min = arr[0]; //找出最大值和最小值 for (int i = 0; i


