在LangChain中,LLM(大型语言模型)和LLM Chain的区别是什么?

2024-06-23 1147阅读

简单来说,LLM是一个大型语言模型,而LLM Chain是由多个LLM或其他组件组成的链式结构,用于在LangChain中构建复杂的自然语言处理流程。

Direct LLM Interface:        直接大型语言模型(LLM)接口:

llm = OpenAI(temperature=0.9)    
    if prompt:            
        response = llm(prompt)
        st.write(response)

In this approach, you're directly using an instance of the OpenAI class. This class likely has an implementation of the model that can directly process a given prompt and return a response. The process is straightforward: you provide a prompt, the model generates a response.

在这种方法中,您直接使用了OpenAI类的一个实例。这个类可能包含了模型的实现,能够直接处理给定的提示并返回响应。整个过程很直接:您提供一个提示,模型生成一个响应。

LLMChain Interface:        LLMChain接口

   from langchain.prompts import PromptTemplate.  
   from langchain.chains import LLMChain
   template = "Write me something about {topic}".  
   topic_template = PromptTemplate(input_variables=['topic'], 
   template=template)
   topic_chain = LLMChain(llm=llm, prompt=topic_template)
   if prompt:    
     response = topic_chain.run(question).  
     st.write(response)

This approach involves a higher level of abstraction using the LLMChain and PromptTemplate classes. Here's a breakdown of what each part does:

这种方法涉及更高层次的抽象,使用了LLMChain和PromptTemplate类。以下是每个部分的功能分解:

PromptTemplate: Defines a structured prompt where you can specify variables that get filled in, ensuring that prompts adhere to a specific format.

PromptTemplate:定义了一个结构化的提示,其中可以指定要填充的变量,以确保提示遵循特定的格式。

LLMChain: Seems to be a chain or sequence of processes that likely utilize the underlying LLM. It takes a structured prompt and the underlying model to generate a response.

LLMChain:似乎是一个流程链或流程序列,可能利用了底层的大型语言模型(LLM)。它采用结构化提示和底层模型来生成响应。

When to use which?        它们的使用场景是什么?

Direct LLM Interface: This is suitable for more flexible or ad-hoc tasks where the prompt structure can vary widely and doesn't need to adhere to a predefined format.

直接大型语言模型(LLM)接口:这适用于更灵活或临时性的任务,其中提示结构可以有很大的变化,并且不需要遵循预定义的格式。

LLMChain Interface: This is apt for more structured tasks where consistency in the prompt format is essential. By using a chain, you can also potentially extend functionalities, like adding pre-processing or post-processing steps before and after querying the model.

LLMChain接口:这更适用于结构化的任务,其中提示格式的一致性至关重要。通过使用链式接口,您还可以潜在地扩展功能,例如在查询模型之前和之后添加预处理或后处理步骤。

在LangChain中,LLM(大型语言模型)和LLM Chain的区别是什么?

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]