【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——上

2024-06-14 1146阅读

1.K-Means

假定我们对A、B、C、D四个样品分别测量两个变量,得到的结果见下表。

样品

变量

X1X2

A

5

3

B

-1

1

C

1

-2

D

-3

-2

利用K-Means方法将以上的样品聚成两类。为了实施均值法(K-Means)聚类,首先将这些样品随意分成两类(A、B)和(C、D)。请详细给出每次聚类的中心坐标,计算样品到中心坐标的欧氏平方距离。

解:

        第一步:按要求取K=2,为了实施均值法聚类,我们将这些样品随意分成两类(A、B)和(C、D),然后计算这两个聚类的中心坐标(见下表)。中心坐标是通过原始数据计算得来的。

聚类中心坐标一

聚类

中心坐标

X1X2

(A、B)

2

2

(C、D)

-1

-2

        第二步:计算某个样品到各类中心的欧氏平方距离,然后将该样品分配给最近的一类对于样品有变动的类,重新计算它们的中心坐标,为下一步聚类做准备。先计算A到两个类的平方距离:

d²(A,(AB))=(5-2)²+(3-2)²=10

d²(A,(CD))= (5 + 1)²+ (3 + 2)²= 61

由于A到(4、B)的距离小于到(C、D)的距离,因此A不用重新分配。计算B到两类的平方距离

d²(B,(AB))=(-1-2)²+(1-2)²=10

d²(B,(CD))=(-1 + 1)²+(1 + 2)²=9

由于B到(4、B)的距离大于到(C、D)的距离,因此B要分配给(C、D)类,得到新的聚类是(A)和(B、C、D)。更新中心坐标如下表所示。

 聚类中心坐标二

聚类

中心坐标

X1X2

(A)

5

3

(B、C、D)

-1

-1

        第三步:再次检查每个样品,以决定是否需要重新分类。计算各样品到各中心的距离平方,结果如下表所示。

样本到中心的距离平方

聚类

样本到中心的距离平方

A

B

C

D

(A)

0

40

41

89

(B、C、D)

52

4

5

5

到现在为止,每个样品都已经分配给距离中心最近的类,聚类过程到此结束。最终得到K=2的聚类结果是4独自成一类,B、C、D聚成一类。

2.试分析回归与分类的区别。

输出结果

应用场景

分类

离散的类别标签

(有限个离散变量)

用于将事物或数据样本分配到一个或多个预定义的类别中,比如识别图片中的动物种类。分类的目标是构建一个模型,该模型能够基于输入的特征来预测数据样本所属的类别。

回归

连续的数值

(连续变量)

通常用于预测一个连续性的数值,比如预测股票价格。目标是找到一个函数,能够基于输入的特征来预测一个连续的数值。

3.基于正态分布的离群点检测

假设某城市过去10年中7月份的平均温度按递增序排列,结果为24℃、28.9℃、28.9℃、29℃、29.1℃、29.1℃、29.2℃、29.2℃、29.3℃和29.4℃。假定平均温度服从正态分布,由两个参数决定:均值和标准差。假设数据分布在这个区间(以平均【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——上标准差)之外,该数据对象即为离群点。

(1)利用最大似然估计求均值和标准差。

均值(μ)的估计:【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——上

其中 n=10,xi​ 是每个样本的温度值。

将给定的温度值代入公式,得到:

μ=(24+2×28.9+29+2×29.1+2×29.2+29.3+29.4)/10=28.61

标准差(σ)的估计:

由于样本数量 n=10,我们使用样本标准差的无偏估计:
【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——上

将给定的温度值和计算得到的均值代入公式,得到标准差 s 的值。

s=sqrt([(24-28.61)^2+(28.9-28.61)^2+...+(29.4-28.61)^2]/9)约等于1.63

(2)寻找上述10个对象中的所有离群点。

根据题目,离群点定义为数据对象落在平均值加减一个标准差之外的值。即,离群点不在区间 

(μ^​−σ^,μ^​+σ^)=(28.61−1.63,28.61+1.63)=(26.98,30.24) 内。

由于 μ=28.61 和 s≈1.63,我们可以发现所有给定的温度值中24℃不在区间 (26.98,30.24) 内。

4.K均值与K中心点

K均值和K中心点算法都可以进行有效的聚类。

(1)概述K均值和K中心点的优缺点。

优点

缺点

K均值法

聚类时间短。当结果簇密集且簇间区别明显,效果较好。能对大数据集进行高效划分。

必须先指定聚类簇的个数。只适用于数值属性聚类,对噪声和异常数据很敏感,对于不同的初始值,结果可能不同。不适合发现非凸面形状的簇。

K中心点法

对于非凸数据集也能较好聚类效果,且对于噪声点影响比较小

算法效率相对K-均值法较低,还有可能出现簇中心点初始化不佳,导致聚类结果不埋想的情况。


(2)概述这两种方法与层次聚类方法相比较有何优缺点。

层次聚类方法(AGNES)是一种分层聚类的方法,将教据点分层次进行聚类,也就是在保留所有数据点的前提下,从最小单元开始进行聚类,然后逐步合并相近的类别,最后形成n个。

        优点是没有预先设定需要聚类的数量,能够处理复杂的数据结构,相对于K-均值、K-中心点更能反映出数据分布的全貌,尤其是在不平凡分布的数据上表现更加突出。

        缺点是AGNES算法计算量较大,在大规模数据集上效率较低,且聚类结果可能受到簇合并顺序的影响。

5.Apriori算法:通过限制候选产生发现频繁项集

数据表中有5个事物,设min_sup=60%,min_conf=80%,并有下表所示信息。

TID

购买的商品

T100

{M,O,N,K,E,Y}

T200

{D,O,N,K,E,Y}

T300

{M,A,K,E}

T400

{M,U,C,K,Y}

T500

{C,O,O,K,I,E}

请用Apriori算法找出频繁项集。

置信度(min_conf)是在找到频繁项集之后,用于生成关联规则时的一个参数,不用理会。

依题得min_sup=0.6*5=3,计算所有单项集的计数得到支持度计数大于等于3的频繁1-项集:

m    3

o    3

n    2

k    5

e    4

y    3

d    1

a    1

u    1

c    2

i    1

频繁 1- 顶集: M,O,K,E,Y

然后根据频繁1-项集,找出支持度技术大于等于3的频繁2-项集:

mo    1

mk    3

me    2

my    2

ok    3

oe    3

oy    2

ke    4

ky    3

ey    2

频繁 2- 项集: {M,K},{O,K},{O,E} ,{K,Y},{K,E}

再根据频繁2-项集,找出支持度技术大于等于3的频繁3-项集:

oke    3

key    2

频繁 3- 项集: {O,K,E}

故,用Apriori算法找出的频繁项集有频繁 1- 顶集: M,O,K,E,Y;  频繁 2- 项集: {M,K},{O,K},{O,E} ,{K,Y},{K,E};  频繁 3- 项集: {O,K,E}

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]