信号特征之希尔伯特变换(Python、C++、MATLAB实现)
希尔伯特变换
1 特征描述
希尔伯特变换广泛使用于信号处理应用中,以获得信号的解析表示。其可以计算瞬时频率和相位,相位被定义为原始信号和信号的希尔伯特变换之间的角度。对于信号 x ( t ) x(t) x(t),其希尔伯特变换定义如下。
x ^ ( t ) = H [ x ( t ) ] = 1 π ∫ − ∞ + ∞ x ( τ ) t − τ d τ \hat{x}(t)=H[x(t)]=\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{x(\tau)}{t-\tau}\,\text{d}\tau x^(t)=H[x(t)]=π1∫−∞+∞t−τx(τ)dτ
由上式可知,随着变换的结果,自变量不变,因此输出 x ^ ( t ) \hat{x}(t) x^(t)也是与时间有关的函数。此外, x ^ ( t ) \hat{x}(t) x^(t)是 x ( t ) x(t) x(t)的线性函数。它是由 ( π t ) − 1 {({\pi}t)}^{-1} (πt)−1与 x ( t ) x(t) x(t)卷积获得的,如下关系所示。
x ^ ( t ) = 1 π t ∗ x ( t ) \hat{x}(t)=\frac{1}{{\pi}t}\,\ast\,x(t) x^(t)=πt1∗x(t)
由上式可以得到 x ( t ) x(t) x(t)的希尔伯特变换的傅立叶变换如下所示。
F [ x ^ ( t ) ] = F [ 1 π t ] F [ x ( t ) ] = − j s g n ( f ) F [ x ( t ) ] \begin{split} F[\hat{x}(t)]&=F[\frac{1}{{\pi}t}]F[x(t)] \\ &=-j\,sgn(f)F[x(t)] \end{split} F[x^(t)]=F[πt1]F[x(t)]=−jsgn(f)F[x(t)]
其中, s g n ( f ) sgn(f) sgn(f)如下所示。
s g n ( f ) = { + 1 , f > 0 0 , f = 0 − 1 , f 0\\ 0,&{\quad}f=0\\ -1,&{\quad}f0f=0f> cinNum; //201 for (size_t i = 0; i > temp; cinS.emplace_back(temp); } HilbertTransform(cinS, outputS); cout
