信号特征之希尔伯特变换(Python、C++、MATLAB实现)

2024-06-08 1901阅读

希尔伯特变换

1 特征描述

希尔伯特变换广泛使用于信号处理应用中,以获得信号的解析表示。其可以计算瞬时频率和相位,相位被定义为原始信号和信号的希尔伯特变换之间的角度。对于信号 x ( t ) x(t) x(t),其希尔伯特变换定义如下。

x ^ ( t ) = H [ x ( t ) ] = 1 π ∫ − ∞ + ∞ x ( τ ) t − τ   d τ \hat{x}(t)=H[x(t)]=\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{x(\tau)}{t-\tau}\,\text{d}\tau x^(t)=H[x(t)]=π1​∫−∞+∞​t−τx(τ)​dτ

由上式可知,随着变换的结果,自变量不变,因此输出 x ^ ( t ) \hat{x}(t) x^(t)也是与时间有关的函数。此外, x ^ ( t ) \hat{x}(t) x^(t)是 x ( t ) x(t) x(t)的线性函数。它是由 ( π t ) − 1 {({\pi}t)}^{-1} (πt)−1与 x ( t ) x(t) x(t)卷积获得的,如下关系所示。

x ^ ( t ) = 1 π t   ∗   x ( t ) \hat{x}(t)=\frac{1}{{\pi}t}\,\ast\,x(t) x^(t)=πt1​∗x(t)

由上式可以得到 x ( t ) x(t) x(t)的希尔伯特变换的傅立叶变换如下所示。

F [ x ^ ( t ) ] = F [ 1 π t ] F [ x ( t ) ] = − j   s g n ( f ) F [ x ( t ) ] \begin{split} F[\hat{x}(t)]&=F[\frac{1}{{\pi}t}]F[x(t)] \\ &=-j\,sgn(f)F[x(t)] \end{split} F[x^(t)]​=F[πt1​]F[x(t)]=−jsgn(f)F[x(t)]​

其中, s g n ( f ) sgn(f) sgn(f)如下所示。

s g n ( f ) = { + 1 , f > 0 0 , f = 0 − 1 , f 0\\ 0,&{\quad}f=0\\ -1,&{\quad}f0f=0f> cinNum; //201 for (size_t i = 0; i > temp; cinS.emplace_back(temp); } HilbertTransform(cinS, outputS); cout

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]