python DataFrame数据分组统计groupby()函数

2024-05-29 1891阅读

df = pd.DataFrame(data=data, index=index, columns=columns)

print(df)

print(“=================================================”)

df1 = df.groupby([‘class_1’, ‘class_2’]).sum() # 分组统计求和

print(df1)

python DataFrame数据分组统计groupby()函数


1.3 对DataFrameGroupBy对象列名索引(对指定列统计计算)


其中,df.groupby(‘class_1’)得到一个DataFrameGroupBy对象,对该对象可以使用列名进行索引,以对指定的列进行统计。

如:df.groupby(‘class_1’)[‘num’].sum()

import pandas as pd

data = [[‘a’, ‘A’, ‘1等’, 109], [‘b’, ‘B’, ‘1等’, 112], [‘c’, ‘A’, ‘1等’, 125], [‘d’, ‘B’, ‘2等’, 120],

[‘e’, ‘B’, ‘1等’, 126], [‘f’, ‘B’, ‘2等’, 133], [‘g’, ‘A’, ‘2等’, 124], [‘h’, ‘B’, ‘1等’, 134],

[‘i’, ‘A’, ‘2等’, 117], [‘j’, ‘A’, ‘2等’, 128], [‘h’, ‘A’, ‘1等’, 130], [‘i’, ‘B’, ‘2等’, 122]]

index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

columns = [‘name’, ‘class_1’, ‘class_2’, ‘num’]

df = pd.DataFrame(data=data, index=index, columns=columns)

print(df)

print(“=================================================”)

df1 = df.groupby(‘class_1’)[‘num’].sum()

print(df1)

代码运行结果同上。


2. 对分组数据进行迭代

===================================================================================

2.1 对一级分类的DataFrameGroupBy对象进行遍历


for name, group in DataFrameGroupBy_object

其中,name指分类的类名,group指该类的所有数据。

import pandas as pd

data = [[‘a’, ‘A’, ‘1等’, 109], [‘b’, ‘C’, ‘1等’, 112], [‘c’, ‘A’, ‘1等’, 125], [‘d’, ‘B’, ‘2等’, 120],

[‘e’, ‘B’, ‘1等’, 126], [‘f’, ‘B’, ‘2等’, 133], [‘g’, ‘C’, ‘2等’, 124], [‘h’, ‘A’, ‘1等’, 134],

[‘i’, ‘C’, ‘2等’, 117], [‘j’, ‘A’, ‘2等’, 128], [‘h’, ‘B’, ‘1等’, 130], [‘i’, ‘C’, ‘2等’, 122]]

index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

columns = [‘name’, ‘class_1’, ‘class_2’, ‘num’]

df = pd.DataFrame(data=data, index=index, columns=columns)

print(df)

print(“====================

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]