【西瓜书机器学习】第五章 神经网络

2024-05-14 1098阅读

一起啃西瓜书(5)-神经网络《机器学习-周志华》 - 知乎 (zhihu.com)参考进行自我复习整理,侵删!

1、神经元模型
  1. 神经网络定义:神经网络是由 具有适应性 的 简单单元 组成的广泛 并行互连 的网络。
  2. M-P神经元模型:输入、处理、输出

【西瓜书机器学习】第五章 神经网络

【西瓜书机器学习】第五章 神经网络

        第二步超过阈值则兴奋(做出反应),否则不兴奋(没反应) ,通过f(x)阶跃函数实现,但阶跃函数不连续,使用sigmoid函数。

【西瓜书机器学习】第五章 神经网络【西瓜书机器学习】第五章 神经网络

2、感知机
  1. 组成:两层,输入层接受外界信号、输出层是“M-P神经元”。
  2. 明确:输入层的神经元不是“M-P神经元”,他们没有“阈值”可言,无激活函数
  3. 把阈值转换为类似权重*输入值的形式:【西瓜书机器学习】第五章 神经网络
  4. 学习规则:对于一个样例(x,y),当前感知机的输出为 𝑦^,也就是y为根据x得到的真实的y,也是我们期望感知机能得到的y,但是感知机实际输出的为 𝑦^,两者之间的差距为y- 𝑦^,为了使输出更接近,也就是使y- 𝑦^最小化,我们需要调整感知机参数(所有权重及阈值,阈值已经被转换为了权重形式),调整公式如下:【西瓜书机器学习】第五章 神经网络

     也就是学习率越大,调整幅度越大;感知机输出与实际之间的差距越大,调整幅度越大;该神经元的输入值越大,调整幅度越大。同时我们也可以得到如下结论:

  • 若感知机预测正确,不需要调整
  • w向着预测正确的方向调整
  • 根据错误的程度对参数进行调

         5. 可解决问题:线性可分问题。也就是在坐标系中两种类型之间可以用一条线划分开,比如与或非问题可划分如下,其中蓝色为正样本,绿色为负样本。

    【西瓜书机器学习】第五章 神经网络

            但是异或问题至少要用两条线才可分割开,如下图所示,这也就意味着感知机无法解决该问题,需要引入两层感知机来解决。

    【西瓜书机器学习】第五章 神经网络

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]