时间序列分析——基于R | 第3章 ARMA模型的性质习题代码
温馨提示:这篇文章已超过404天没有更新,请注意相关的内容是否还可用!
时间序列分析——基于R | 第3章 ARMA模型的性质
往期文章
时间序列分析——基于R | 第1章习题代码
时间序列分析——基于R | 第2章时间序列的预处理习题代码
-
已知某 A R ( 1 ) AR(1) AR(1)模型为: x t = 0.7 x t − 1 + ε t , ε t ∼ W N ( 0 , 1 ) . x_t=0.7x_{t-1}+\varepsilon_t,\varepsilon_t \sim WN(0,1). xt=0.7xt−1+εt,εt∼WN(0,1).求 E ( x t ) , V a r ( x t ) , ρ 2 E(x_t),Var(x_t),\rho_2 E(xt),Var(xt),ρ2和 ϕ 22 . \phi_{22}. ϕ22.
E ( x t ) = ϕ 0 1 − ϕ 1 = 0 1 − 0.7 = 0 E\left(x_t\right)=\frac{\phi_{0}}{1-\phi_{1}}=\frac{0}{1-0.7}=0 E(xt)=1−ϕ1ϕ0=1−0.70=0
V a r ( x t ) = 1 1 − ϕ 1 2 = 1 1 − 0. 7 2 = 1.96 Var(x_t)=\frac{1}{1-\phi_{1}^{2}}=\frac{1}{1-0.7^2}=1.96 Var(xt)=1−ϕ121=1−0.721=1.96
ρ 2 = ϕ 1 2 = 0. 7 2 = 0.49 \rho_2=\phi_1^2=0.7^2=0.49 ρ2=ϕ12=0.72=0.49
ϕ 22 = ∣ 1 ρ 1 ρ 1 ρ 2 ∣ ∣ 1 ρ 1 ρ 1 1 ∣ = 0.49 − 0. 7 2 1 − 0. 7 2 = 0 \phi_{22}=\frac{\left|\begin{array}{cc}1 & \rho_{1} \\\rho_{1} & \rho_{2}\end{array}\right|}{\left|\begin{array}{cc}1 & \rho_{1} \\\rho_{1} & 1\end{array}\right|}=\frac{0.49-0.7^{2}}{1-0.7^{2}}=0 ϕ22= 1ρ1ρ11 1ρ1ρ1ρ2 =1−0.720.49−0.72=0
-
已知某 AR ( 2 ) \operatorname{AR}(2) AR(2) 模型为: x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + ε t , ε t ∼ W N ( 0 , σ ε 2 ) x_t=\phi_1 x_{t-1}+\phi_2 x_{t-2}+\varepsilon_t, \varepsilon_t \sim W N\left(0, \sigma_{\varepsilon}^2\right) xt=ϕ1xt−1+ϕ2xt−2+εt,εt∼WN(0,σε2), 且 ρ 1 = \rho_1= ρ1= 0.5 , ρ 2 = 0.3 0.5, \rho_2=0.3 0.5,ρ2=0.3, 求 ϕ 1 , ϕ 2 \phi_1, \phi_2 ϕ1,ϕ2 的值.
A R ( 2 ) A R(2) AR(2) 模型有:
{ ρ 1 = ϕ 1 1 − ϕ 2 ρ 2 = ϕ 1 ρ 1 + ϕ 2 ⇒ { 0.5 = ϕ 1 1 − ϕ 2 0.3 = 0.5 ϕ 1 + ϕ 2 ⇒ { ϕ 1 = 7 15 , ϕ 2 = 1 15 ϕ 2 = 1 15 \left\{\begin{array} { l } { \rho _ { 1 } = \frac { \phi _ { 1 } } { 1 - \phi _ { 2 } } } \\ { \rho _ { 2 } = \phi _ { 1 } \rho _ { 1 } + \phi _ { 2 } } \end{array} \Rightarrow \left\{\begin{array} { l } { 0 . 5 = \frac { \phi _ { 1 } } { 1 - \phi _ { 2 } } } \\ { 0 . 3 = 0 . 5 \phi _ { 1 } + \phi _ { 2 } } \end{array} \Rightarrow \left\{\begin{array}{l} \phi_1=\frac{7}{15}, \phi_2=\frac{1}{15} \\ \phi_2=\frac{1}{15} \end{array}\right.\right.\right. {ρ1=1−ϕ2ϕ1ρ2=ϕ1ρ1+ϕ2⇒{0.5=1−ϕ2ϕ10.3=0.5ϕ1+ϕ2⇒{ϕ1=157,ϕ2=151ϕ2=151
-
已知某 AR ( 2 ) \operatorname{AR}(2) AR(2) 模型为: ( 1 − 0.5 B ) ( 1 − 0.3 B ) x t = ε t , ε t ∼ W N ( 0 , 1 ) (1-0.5 B)(1-0.3 B) x_t=\varepsilon_t, \varepsilon_t \sim W N(0,1) (1−0.5B)(1−0.3B)xt=εt,εt∼WN(0,1), 求 E ( x t ) E\left(x_t\right) E(xt), Var ( x t ) , ρ k , ϕ k k \operatorname{Var}\left(x_t\right), \rho_k, \phi_{k k} Var(xt),ρk,ϕkk, 其中 k = 1 , 2 , 3 k=1,2,3 k=1,2,3.
(1) ( 1 − 0.5 B ) ( 1 − 0.3 B ) x t = ε t ⇔ x t = 0.8 x t − 1 − 0.15 x t − 2 + ε t (1-0.5 B)(1-0.3 B) x_t=\varepsilon_t \Leftrightarrow x_t=0.8 x_{t-1}-0.15 x_{t-2}+\varepsilon_t (1−0.5B)(1−0.3B)xt=εt⇔xt=0.8xt−1−0.15xt−2+εt
E ( x t ) = ϕ 0 1 − ϕ 1 − ϕ 2 = 0 E\left(x_t\right)=\frac{\phi_0}{1-\phi_1-\phi_2}=0 E(xt)=1−ϕ1−ϕ2ϕ0=0
(2)
Var ( x t ) = 1 − ϕ 2 ( 1 + ϕ 2 ) ( 1 − ϕ 1 − ϕ 2 ) ( 1 + ϕ 1 − ϕ 2 ) = 1 + 0.15 ( 1 − 0.15 ) ( 1 − 0.8 + 0.15 ) ( 1 + 0.8 + 0.15 ) = 1.98 \begin{aligned} \operatorname{Var}\left(x_t\right) & =\frac{1-\phi_2}{\left(1+\phi_2\right)\left(1-\phi_1-\phi_2\right)\left(1+\phi_1-\phi_2\right)} \\ & =\frac{1+0.15}{(1-0.15)(1-0.8+0.15)(1+0.8+0.15)} \\ & =1.98 \end{aligned} Var(xt)=(1+ϕ2)(1−ϕ1−ϕ2)(1+ϕ1−ϕ2)1−ϕ2=(1−0.15)(1−0.8+0.15)(1+0.8+0.15)1+0.15=1.98
(3)
ρ 1 = ϕ 1 1 − ϕ 2 = 0.8 1 + 0.15 = 0.70 ρ 2 = ϕ 1 ρ 1 + ϕ 2 = 0.8 × 0.7 − 0.15 = 0.41 ρ 3 = ϕ 1 ρ 2 + ϕ 2 ρ 1 = 0.8 × 0.41 − 0.15 × 0.7 = 0.22 \begin{aligned} & \rho_1=\frac{\phi_1}{1-\phi_2}=\frac{0.8}{1+0.15}=0.70 \\ & \rho_2=\phi_1 \rho_1+\phi_2=0.8 \times 0.7-0.15=0.41 \\ & \rho_3=\phi_1 \rho_2+\phi_2 \rho_1=0.8 \times 0.41-0.15 \times 0.7=0.22 \end{aligned} ρ1=1−ϕ2ϕ1=1+0.150.8=0.70ρ2=ϕ1ρ1+ϕ2=0.8×0.7−0.15=0.41ρ3=ϕ1ρ2+ϕ2ρ1=0.8×0.41−0.15×0.7=0.22
(4)
ϕ 11 = ρ 1 = 0.7 ϕ 22 = ϕ 2 = − 0.15 ϕ 33 = 0 \begin{aligned} \phi_{11} & =\rho_1=0.7 \\ \phi_{22} & =\phi_2=-0.15 \\ \phi_{33} & =0 \end{aligned} ϕ11ϕ22ϕ33=ρ1=0.7=ϕ2=−0.15=0
-
已知 AR ( 2 ) \operatorname{AR}(2) AR(2) 序列为 x t = x t − 1 + c x t − 2 + ε t x_t=x_{t-1}+c x_{t-2}+\varepsilon_t xt=xt−1+cxt−2+εt, 其中 { ε t } \left\{\varepsilon_t\right\} {εt} 为白噪声序列. 确定 c c c 的取值范围, 以保证 { x t } \left\{x_t\right\} {xt} 为平稳序列, 并给出该序列 ρ k \rho_k ρk 的表达式.
(1) A R ( 2 ) A R(2) AR(2) 模型的平稳条件是
{ ∣ c ∣
