YoloV8改进策略:BackBone改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

2024-03-25 1159阅读

温馨提示:这篇文章已超过403天没有更新,请注意相关的内容是否还可用!

摘要

本文尝试使用Mamba主干网络替换YoloV8的主干网络,打造最新的Yolo-Mamba网络。

YoloV8改进策略:BackBone改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络
(图片来源网络,侵删)

论文:《Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络》

在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算效率而著称,我们提出了Mamba-UNet,这是一种将U-Net在医学图像分割中的能力与Mamba的能力相结合的新型架构。

Mamba-UNet采用了一种纯视觉Mamba(VMamba)基础的编码器-解码器结构,其中融入了跳跃连接,以在网络的不同尺度上保留空间信息。这种设计促进了全面的特征学习过程,能够捕获医学图像中的复杂细节和更广泛的语义上下文。我们在VMamba块内引入了一种新型集成机制,以确保编码器和解码器路径之间的无缝连接和信息流动,从而提高分割性能。

我们在公开可用的MRI心脏多结构分割数据集上进行了实验。结果表明,在相同的超参数设置下,Mamba-UNet在医学图像分割方面优于UNet和SwinUNet。源代码和基线实现可在https://github.com/ziyangwang007/Mamba-UNet上找到。

关键词:医学图像分割 - 卷积 - 转换器 - Mamba - 状态空间模型

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]