WhisperFusion:具有超低延迟无缝对话功能的AI系统

2024-03-11 1603阅读

温馨提示:这篇文章已超过378天没有更新,请注意相关的内容是否还可用!

WhisperFusion 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。

WhisperFusion:具有超低延迟无缝对话功能的AI系统
(图片来源网络,侵删)

LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech 是通过 torch.compile 进行优化的。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:LLM 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

  • torch.compile:WhisperSpeech 使用 torch.compile 来加速推理,通过将 PyTorch 代码 JIT 编译到优化的内核中,使 PyTorch 代码运行得更快。

    入门

    • 我们提供了一个预构建的 TensorRT-LLM docker 容器,该容器将 Whisper 和 phi 转换为 TensorRT 引擎,并且预先下载 WhisperSpeech 模型以快速开始与 WhisperFusion 交互。

       docker run --gpus all --shm-size 64G -p 6006:6006 -p 8888:8888 -it ghcr.io/collabora/whisperfusion:latest
      • 启动网页图形用户界面

        cd examples/chatbot/htmlpython -m http.server

        构建 Docker 镜像

        我们提供 cuda-architecures 89 和 90 的 docker 映像。如果您有具有不同 cuda 架构的 GPU。例如使用 cuda-架构 86 为 RTX 3090 构建

        bash build.sh 86-real

        这应该为 RTX 3090 构建 ghcr.io/collabora/whisperfusion:latest 。

        项目链接

        https://github.com/collabora/WhisperFusion

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]