数据仓库的主流分层架构

2024-03-10 1628阅读

温馨提示:这篇文章已超过395天没有更新,请注意相关的内容是否还可用!

数据仓库的分层架构主要是为了更好地组织和管理数据,以及优化数据处理和分析的效率。一般来说,数据仓库可以分为以下几个层次:

数据仓库的主流分层架构
(图片来源网络,侵删)

源数据层(Source Layer):也称为ODS(Operational Data Store)层,是数据仓库的最底层,主要存储原始的业务数据。这些数据通常直接从各个业务系统中抽取,不经过任何清洗或转换。
数据仓库明细层(Data Warehouse Detail, DWD):这一层主要存储明细数据,即对源数据层的数据进行清洗、转换和加载后的结果。数据仓库明细层的数据应该是一致的、准确的、干净的数据,即去除了杂质的数据。
数据仓库汇总层(Data Warehouse Summary, DWS):这一层主要存储汇总数据,即对DWD层的数据进行进一步的聚合和汇总。数据仓库汇总层的数据可以支持更高级别的数据分析和报表生成。
应用层(Application Layer):也称为数据应用层(Data Application Layer),是数据仓库的最顶层。这一层的数据主要面向具体的业务应用,如报表、专题分析、数据挖掘等。应用层的数据可以来自DWD层或DWS层,根据具体业务需求进行选择和组合。

除了以上四个层次外,有些数据仓库还会包含一个临时层(Temporary Layer),用于存储一些中间的计算结果或临时数据。这些临时数据在计算完成后通常会被删除,以节省存储空间。

通过分层架构的设计,数据仓库可以更好地满足不同的业务需求,提高数据处理和分析的效率,同时也方便数据的维护和管理。

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]