vpswindows22(VPSWINDOWS)

2023-01-22 1192阅读

温馨提示:这篇文章已超过789天没有更新,请注意相关的内容是否还可用!

vpswindows22\documentclass[12pt]{article}\usepackage{amsmath,amssymb,amsfonts,amsthm,amscd,mathrsfs}\usepackage[all]{xy}\usepackage[margin=1in]{geometry}\newcommand{\R}{\mathbb{R}}\newcommand{\C}{\mathbb{C}}\newcommand{\Q}{\mathbb{Q}}\newcommand{\Z}{\mathbb{Z}}\newcommand{\N
vpswindows22

\documentclass[12pt]{article}

\usepackage{amsmath,amssymb,amsfonts,amsthm,amscd,mathrsfs}

\usepackage[all]{xy}

\usepackage[margin=1in]{geometry}

\newcommand{\R}{\mathbb{R}}

\newcommand{\C}{\mathbb{C}}

\newcommand{\Q}{\mathbb{Q}}

\newcommand{\Z}{\mathbb{Z}}

\newcommand{\N}{\mathbb{N}}

\newcommand{\p}{\mathbb{P}}

\newcommand{\eps}{\varepsilon}

\DeclareMathOperator{\im}{Im}

\DeclareMathOperator{\re}{Re}

\DeclareMathOperator{\rank}{rank}

\DeclareMathOperator{\diag}{diag}

\DeclareMathOperator{\codim}{codim}

\DeclareMathOperator{\conv}{conv}

\DeclareMathOperator{\dist}{dist}

\DeclareMathOperator{\supp}{supp}

\DeclareMathOperator{\sign}{sign}

\DeclareMathOperator{\tr}{tr}

\DeclareMathOperator{\vol}{vol}

\DeclareMathOperator{\id}{Id}

\newtheorem{theorem}{Theorem}

\newtheorem{lemma}{Lemma}

\newtheorem{proposition}{Proposition}

\newtheorem{corollary}{Corollary}

\newtheorem{conjecture}{Conjecture}

\newtheorem{definition}{Definition}

\title{\bf On the regularity of the dual solution to a linear program}

\author{Amit Ghosh and Sanjoy Mitter}

\date{}

\begin{document}

\maketitle

\begin{abstract}

We study the regularity properties of the dual solution to a linear program. We present two new results. Our first result is a sufficient condition for the dual solution to be regular in terms of the structure of the corresponding primal Slater point. This result is used to develop a sufficient condition for the dual solution to be regular when the primal solution is regular. The second result is a consequence of the first and it is an upper bound on the number of regions of regularity of the dual solution in terms of the number of regions of regularity of the primal solution.

\end{abstract}

\section{Introduction}

We study the regularity properties of the dual solution to a linear program. We consider the following primal and dual linear programs:

{\it Primal Problem:}

\begin{align}\label{e:primal}

\min \quad & c^T x \\

\mbox{s.t.} \quad & A x \geq b, \nonumber

\end{align}

{\it Dual Problem:}

\begin{align}\label{e:dual}

\max \quad & b^T y\\

\mbox{s.t.} \quad & A^T y \leq c. \nonumber

\end{align}

Let $(x^*,y^*)$ be a pair of primal and dual

vpswindows22(VPSWINDOWS)

VPSWINDOWS

VPS Windows is a virtual private server (VPS) based on the Windows operating system. It is a type of hosting that allows users to have their own dedicated server, with complete control over software, applications, and access to the system. VPS Windows offers several advantages, such as flexibility and scalability, enhanced security, and cost-effectiveness. It is also easier to set up and manage, compared to a dedicated hosting solution.

vps220

(\bibinfo{year}{2009}).

\bibitem[{\citenamefont{Konig et~al.}(2010)\citenamefont{Konig, Laemmlin,

G{\"o}tze, Schwarz, Thomas, and B{\"o}hme}}]{Konig2010}

\bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{Konig}},

\bibinfo{author}{\bibfnamefont{M.}~\bibnamefont{Laemmlin}},

\bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{G{\"o}tze}},

\bibinfo{author}{\bibfnamefont{U.~D.} \bibnamefont{Schwarz}},

\bibinfo{author}{\bibfnamefont{A.}~\bibnamefont{Thomas}}, \bibnamefont{and}

\bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{B{\"o}hme}},

\bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{104}},

\bibinfo{pages}{145701} (\bibinfo{year}{2010}).

\bibitem[{\citenamefont{Konig et~al.}(2011)\citenamefont{Konig, G{\"o}tze,

Schwarz, Laemmlin, Thomas, and B{\"o}hme}}]{Konig2011}

\bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{Konig}},

\bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{G{\"o}tze}},

\bibinfo{author}{\bibfnamefont{U.~D.} \bibnamefont{Schwarz}},

\bibinfo{author}{\bibfnamefont{M.}~\bibnamefont{Laemmlin}},

\bibinfo{author}{\bibfnamefont{A.}~\bibnamefont{Thomas}}, \bibnamefont{and}

\bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{B{\"o}hme}},

\bibinfo{journal}{New J. Phys.} \textbf{\bibinfo{volume}{13}},

\bibinfo{pages}{033021} (\bibinfo{year}{2011}).

\bibitem[{\citenamefont{Boehme}(2011)}]{Boehme2010}

\bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{Boehme}},

\bibinfo{journal}{Nature Mater.} \textbf{\bibinfo{volume}{10}},

\bibinfo{pages}{459} (\bibinfo{year}{2011}).

\bibitem[{\citenamefont{Konig et~al.}(2012)\citenamefont{

有云计算,存储需求就上慈云数据:so0.cn
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]