【AutoencoderKL】基于stable-diffusion-v1.4的vae对图像重构

2024-07-14 1825阅读

模型地址:https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/vae

主要参考:Using-Stable-Diffusion-VAE-to-encode-satellite-images

【AutoencoderKL】基于stable-diffusion-v1.4的vae对图像重构

sd1.4 vae

下载到本地

from diffusers import AutoencoderKL
from PIL import Image
import  torch
import torchvision.transforms as T
#  ./huggingface/stable-diffusion-v1-4/vae 切换为任意本地路径
vae = AutoencoderKL.from_pretrained("./huggingface/stable-diffusion-v1-4/vae",variant='fp16')
# c:\Users\zeng\Downloads\vae_config.json
def encode_img(input_img):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
        # Transform the image to a tensor and normalize it
    transform = T.Compose([
        # T.Resize((256, 256)),
        T.ToTensor()
    ])
    input_img = transform(input_img)
    if len(input_img.shape) list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu()
    # image = T.Resize(original_size)(image.squeeze())
    return T.ToPILImage()(image.squeeze())
if __name__ == '__main__':
    # Load an example image
    input_img = Image.open("huge.jpg")
    original_size = input_img.size
    print('original_size',original_size)
    # Encode and decode the image
    latents = encode_img(input_img)
    reconstructed_img = decode_img(latents)
    # Save the reconstructed image
    reconstructed_img.save("reconstructed_example2.jpg")
    # Concatenate the original and reconstructed images
    concatenated_img = Image.new('RGB', (original_size[0] * 2, original_size[1]))
    concatenated_img.paste(input_img, (0, 0))
    concatenated_img.paste(reconstructed_img, (original_size[0], 0))
    # Save the concatenated image
    concatenated_img.save("concatenated_example2.jpg")
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]