一维时间序列突变检测方法(小波等,MATLAB R2021B)

2024-06-09 1066阅读

信号的突变点检测问题是指在生产实践中,反映各种系统工作状态的信号,可能因为受到不同类型的噪声或外界干扰而发生了信号突变,导致严重失真的信号出现,因此必须探测突变出现的起点和终点。研究目的在于设计出检测方案,可以最快地检测出系统中信号非正常变化的时刻,作出后续处理,以减小损失。目前在国内,信号的突变点检测课题在滚动轴承、水利水电、智能空间行为识别等许多工程实践和科学研究领域已得到广泛研究。

自上世纪经典DSP方法提出并被逐渐成熟地应用以来,信号的突变点检测问题一直是一个较热的研究课题。对于信号突变点检测问题,目前已经提出了许多有效的经典DSP方法,例如经典的基于信号能量的检测法,然而其易于受噪声干扰且需要延迟一段时间以计算能量,因此发展了不少改进方法,比如基于累积和CUSUM的方式因具有良好的性能而得到广泛应用。CUSUM具有递归形式能够进行实时更新操作,计算效率比较高。虽然最初提出CUSUM来处理单个数据流,但是目前基于CUSUM的检测算法大多利用了来自多个传感器的信息。CUSUM通常需要信号突变前和突变后的统计信息作为检测的前提,在某些情形下,信号发生突变后的分布模型的统计信息是可以获得的,但在更一般场景中,由于突变原因多样且往往未知,变更后的模型发生了根本改变,突变后的统计信息是无法获得或预知的。又有科研人员提出了突变信息快速检测方法,快速检测方法旨在仅仅利用少量突变后的数据来进行训练,以得到信号突变后的模型,以此来最大程度地减少检测延迟。放眼许多应用场景,信号突变以后的分布模型可能来自一组潜在的可能模型,换句话说,变更后模型有多种假设。例如,检测风机轴承故障时,引起该故障的原因故障可能是外圈故障或内圈故障、滚子缺陷或和保存架故障等。在快速检测方法中,贝叶斯方法的效果比较好,本质上该方法就是提出了信号突变后的几种备选模型,然后通过算法来估计出最优的突变后的信号分布情况,进行进一步处理,从一定意义上放宽了很多场景中对突变后信号信息的依赖,但依然是治标不治本。

鉴于此,采用小波分析等方法对一维时间序列进行突变检测,运行环境为MATLAB R2021B。

function residue = cpnochange(x, statistic)
% compute total residual error in the absence of changes
n = size(x,2);
if n==0
  residue = NaN;
elseif strcmp(statistic,'mean')
  residue = n*sum(var(x,1,2));
elseif strcmp(statistic,'rms')
  residue = sum(n*log(sum(x.^2,2)/n));
elseif strcmp(statistic,'std')
  residue = sum(n*log(var(x,1,2)));
elseif strcmp(statistic,'linear')
  residue = sum(n*var(x,1,2) - sum((x-mean(x,2)).*((1:n)-mean(1:n)),2).^2 / (n*var(1:n,1)));
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
end

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

一维时间序列突变检测方法(小波等,MATLAB R2021B)

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]