R语言——朴素贝叶斯文本分类

2024-03-15 1497阅读

温馨提示:这篇文章已超过384天没有更新,请注意相关的内容是否还可用!

朴素贝叶斯方法是最常见的使用贝叶斯思想进行分类的方法,它是目前所知文本分类算法中最有效的一类,常常应用于文本分类。下面将会以一个含多个类别的BBC英文文本数据为例,介绍如何使用朴素贝叶斯方法对其进行数据分类。

1 文本数据准备与探索

下面会直接导入已经预处理后的数据对其进行探索性分析,下面的程序是导入进行文本分类是需要的相关R包,以及数据的导入,数据一共有两个变量,分别是预处理后的文本内容变量text_pre,和类别标签变量lable。

library(tm);library(wordcloud2);library(tidytext);library(reshape2);
library(dplyr);library(e1071);library(ggpol)
## 读取数据,文本数据已经是预处理后的
bbcdata %summarise(Fre = n())%>%
 arrange(desc(Fre))
letterCloud(wordfre,word = "BBC",wordSize = 1,
 color ="random-dark",backgroundColor = "snow" )

R语言——朴素贝叶斯文本分类

图2 词云可视化

图2中将词云以字母的形式进行可视化,越大的词出现的次数就越多。

利用tm包中的Corpus()函数可以对文本数据构建语料库,使用DocumentTermMatrix()函数可以获得文本数据的文档-词项特征矩阵,而且如果获得的文档-词项矩阵过于稀疏,可使用tm包中的removeSparseTerms()函数剔除一些不重要的词语,缓解矩阵的系数程度,下面的程序和输出则是展示了上述的文本特征的构建过程。

## 构建语料库,计算文本的TF特征
bbc_cp 
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]