论文阅读:基于超像素的图卷积语义分割(图结构数据)

2024-03-01 2007阅读

温馨提示:这篇文章已超过387天没有更新,请注意相关的内容是否还可用!

#Superpixel-based Graph Convolutional Network for Semantic Segmentation

github链接

论文阅读:基于超像素的图卷积语义分割(图结构数据)

引言

GNN模型根据节点特征周围的边来训练节点特征,并获得最终的节点嵌入。通过利用具有不同滤波核的二维卷积对来自附近节点的信息进行整合,给定超像素方法生成的特征信息。本文是基于图卷积神经网络,利用超像素图斑对象构建图结构数据,通过对节点实现语义分类,实现超像素分割。

论文阅读:基于超像素的图卷积语义分割(图结构数据)

  • 图学习框架:

    * 转导学习的训练和预测阶段,边缘和节点保持不变。因此,它不允许泛化到不可见的节点和边。

    * 归纳学习始于在具有某些图属性的训练网络中学习模型。经过训练的模型可以近似训练图中可能链接的未知特征。

  • 图卷积与CNN具有相同的属性:

    通过普卷积与空间卷积进行分类

    * 谱图卷积使用基于图信号傅里叶变换的谱滤波器,即图拉普拉斯矩阵的特征分解。但是,它需要一个完整且固定的图,因为图拉普拉斯依赖于整体图结构

    * Spatai卷积网络学习节点嵌入函数,仅反映节点的局部邻域,而不是引用整个图,该模型成功地处理了看不见的图或图中的连续变化

    实验结果:

    论文阅读:基于超像素的图卷积语义分割(图结构数据)

    论文阅读:基于超像素的图卷积语义分割(图结构数据)


    这是一篇2019-2020年的文章,文章的算法精度不是很高,实验数据是无人机数据,相较于经典的CNN与transformer深度学习算法的精度是稍差一些,但对于一些样本数据较少的可能提供一些解决思路,单张输入影像可以达到3000*3000左右,这里利用超像素在一定程度上实现了数据降维的作用。

    看过文章提供的代码后发现,文章在构建图结构信息的时候,仅使用了超像素图斑的像素平均值作为特征。有关图卷积神经网络比较新的文章采用的策略是先通过卷积神经网络进行特征提取,然后采用图结构作为解码端去结合一些先验信息实现分类或分割,后续会更新一篇相关文章作为参考。

    文章提供的代码基于dgl和pytorch实现,对显存有一定要求。

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]