鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

2024-03-01 1720阅读

温馨提示:这篇文章已超过384天没有更新,请注意相关的内容是否还可用!

        本文的主要参考文献:

Zeng B , Zhao L . Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method[J]. Operations Research Letters, 2013, 41(5):457-461.

1.两阶段鲁棒优化问题的引入

        鲁棒优化是应对数据不确定性的一种优化方法,但单阶段鲁棒优化过于保守。为了解决这一问题,引入了两阶段鲁棒优化(Two-stage Robust Optimization)以及更一般的多阶段鲁棒优化,其核心思想是将决策问题分为两个阶段。第一阶段是进行初步决策,第二阶段是根据第一阶段的决策结果制定更好的决策策略,应对数据不确定性的影响。这种方法可以降低保守性,提高鲁棒性。

        假设一阶段和二阶段决策问题都是线性规划,并且不确定性集合U是一个有限的离散集合或者多面体集。使用y表示第一阶段决策变量,x表示第二阶段决策变量,表示不确定矢量。在此假设下的两阶段鲁棒优化的一般形式为:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

其中:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

        向量c,b,d,h和矩阵A , G , E , M都是确定性的数值,不确定性体现在向量u上。注意到第二阶段优化的约束条件F(y,u)是关于不确定性u的线性函数。

        原文献中提供了以运输问题作为算例,具体如下:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

其中,yi为0-1变量,表示是否在i地建设仓库,zi表示仓库i储存的商品数量,xij表示从i仓库到j客户运送的商品数量,fi表示建设仓库i的固定成本,ai表示仓库i存储商品的单位成本,cij表示从i仓库到j客户运送单位商品的成本,ki表示仓库i的最大容量,dj表示客户j的需求。

        不确定变量为客户的需求,表达方式如下:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

        具体算例参数:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

        根据上面的公式,我们可以写出各个参数矩阵以及变量的表达式:

鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解(附matlab代码)

        用matlab代码表示:

%% 参数矩阵
f = [400; 414; 326];
a = [18; 25; 20];
k = 800;
C = [22, 33, 24;
     33, 23, 30;
     20, 25, 27];
d_ = [206; 274; 220];
d_wave = 40;
gamma = [1.8,1.2];
P = [1 1;1 1;1 0];
%% 决策变量
y = binvar(3,1);
z = sdpvar(3,1);
x = sdpvar(3,3,’full’);
d = sdpvar(3,1);
g = sdpvar(3,1);

        可以尝试求解一下这个确定性优化问题,和后面的两阶段鲁棒优化进行对比:

%% 目标函数
objective = f'*y + a'*z + sum(sum(C.*x));
%% 约束条件
Constraints = [];
Constraints = [Constraints , z >= 0 , x >= 0 , g >= 0 , g 
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]